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1. INTRODUCTION

Recent studies have revealed that chromatin remodeling,
caused by DNA methylation and histone modifications such as
acetylation, methylation, and phosphorylation, plays a pivotal
role in DNA replication/repair and the regulation of epigenetic
gene expression.' ® Among the posttranscriptional histone
modifications, lysine methylation is one of the most widely
studied, and methylation at various sites, including lysine 26 of
histone 1 (H1K26), H3K4, H3K9, H3K27, H3K36, H3K79, and
H4K20, has been shown to lead to transcriptional activation or
silencing.” In general, methylation at H3K4 is associated with
actively transcribed gene loci, whereas methylation at H3K9 and
H3K27 leads to transcriptional silencing.® However, the situation
is further complicated by the fact that the £-amino group of Iysine
residues can be mono-, di-, or trimethylated, and differential
methylation at each lysine methylation site provides functional
diversity. For example, dimethylation at H3K4 is associated with
both inactive and active genes, whereas trimethylation is exclu-
sive to active genes.9

In contrast to other histone modifications, such as acetylation
and phosphorylation, histone lysine methylation had been re-
garded as irreversible because of the high thermodynamic stability
of the N—C bond. Indeed, while a number of histone lysine
methyltransferases (HKMTs) had been identified by 2003,
histone lysine demethylases (KDMs) had not been identified.
However, two classes of KDMs have been identified since 2004.
One class includes lysine-specific demethylase 1 (LSD1, also known
as KDM1A) and LSD2 (also known as KDM1B), which are
flavin-dependent amine oxidase domain-containing enzymes.'*""
The other class comprises the recently discovered Jumonji domain-
containing protein (JMJD) histone demethylases,'>"* which are
Fe(1I) and a-ketoglutarate-dependent enzymes. The identifica-
tion of these KDMs established that histone methylation is
reversibly regulated by HKMT's and KDMs.

As there is increasing evidence that KDMs are associated with
various disease states,'* they have emerged as attractive targets
for the development of new therapeutic drugs. To date, several
classes of KDM inhibitors have been identified. In this Perspec-
tive, we review the reported KDM inhibitors and discuss their
potential as therapeutic agents.

2. BIOLOGY AND PHARMACOLOGY OF FLAVIN-
DEPENDENT LYSINE DEMETHYLASES

LSD1, the first histone demethylase to have been discovered,
removes the methyl groups from mono- and dimethylated Lys4
of histone H3 (H3K4me1/2) through flavin adenine dinucleotide
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(FAD) dependent enzymatic oxidation.'® In prostate cell lines,
LSD1 also demethylates H3K9mel/2 and regulates androgen
receptor-mediated transcription.'® The targets of LSD1 regula-
tory demethylation are not limited to histone H3; LSD1 also
demethylates p53,'® DNA methyltransferase 1,/ STAT3,'®
E2F1," and MYPT1?° and regulates their cellular functions.

It has been reported that LSD1 binds with several transcrip-
tion factors and regulates the expression of a number of genes
(Table 1). For example, the LSD1-REI-silencing transcription
factor corepressor (CoREST)—histone deacetylase 1 (HDAC1)
complex demethylates H3K4me2 and mel and decreases the
expression of REST-responsive genes such as synapsin (SYN) and
muscarinic acetylcholine receptor 4 (MuAchR4) in HEK293 cells.”"

LSD1 is overexpressed in various cancer cells and tissues:
neuroblastoma,®® retinoblastoma,26 prostate cancer,">>° breast
cancer,> 9% lung cancer,*' and bladder cancer cells.*' Further-
more, the outcome of RNAi-mediated knockdown or inhibition
of LSD1 suggested that this enzyme is associated with cancer
cell growth by modulatin§ prosurvival gene expression and pS3
transcriptional activity.*”>**** Therefore, LSD1 inhibitors are
of interest not only as tools for elucidating in detail the biological
functions of the enzyme but also as potential anticancer agents.

LSD1 also regulates viral gene transcription.44 In herpes sim-
plex viruses (HSV) and varicella zoster viruses (VZV), increase in
methylation of H3K4 and decrease in methylation of H3K9 are
needed for viral gene transcription in a host cell.*® To increase
methylation, the virus recruits host cell factor 1 (HCF-1) and an
HKMT complex. Kristie and co-workers showed that LSD 1 inter-
acts with the HCF-1 component of the HKMT complex and
demethylates H3K9.* They also showed that blocking LSD1 activity
led to inhibition of viral gene transcription. These results suggested
that LSD1 inhibitors could work as anti-HSV and anti-VZV agents.

LSD2, the other flavin-dependent lysine demethylase, was
identified in 2009,"" and relatively little is yet known about it. It
has been reported that H3K4 demethylation by LSD2 establishes
the DNA methylation imprints during oogenesis*® and activates
transcription,*” while it was also reported that LSD2 represses
transcription and the repression activity is independent of its
demethylase activity.*®

3. STRUCTURAL STUDIES AND CATALYTIC MECHA-
NISM OF FLAVIN-DEPENDENT LYSINE DEMETHYLASES

The X-ray crystal structure of LSD1 complexed with COREST
and a histone H3 peptide was determined by Yang et al.*’ This
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Table 1. Genes Regulated by LSD1

regulation LSD1 target genes LSD1-binding proteins refs
repression SYN1, MuAchR4, SCNIA, REST, CoREST, HDACI, 10,21-23
SCN2A, SCN34, SCG10 HDAC2
GFIL1b, C-MYB, NM_026543 Gfi-1, Gfi-1b, CoREST, 24
HDACI1, HDAC2
Gh ZEB1, CoREST, HDACI, 25
HDAC2, LCoR, PC2
PTEN TLX, CoREST, HDAC], 26
HDAC2
P4.2 TAL1, CoREST, HDAC1, 27
HDAC2
CIITA Blimp-1, HDAC1, HDAC2 28
RAR[2, CYP26, p21 WAFI, ASXLI, RAR, HP1 29
HOXal
E-cadherine, CLDN7, KRT8 Snail, CoREST, HDAC1 30
TESC, cyclin A1, CSRP2, not identified 31
ADAMTS1, PSMB9 10,21-23
SFRPs, GATAs not identified 32
1202, Ifi204, Hesl, Notchl, HoxA9, HoxA 10:1, HoxA 10:2, Heyl, Hey2, Gata3 SIRT1, CoREST, CtBP1 33
dpp not identified 34
activation Gh, PRL, TSHB, PITI PIT1, WDRS 25
PSA AR, KDM4C 15, 35
pS2, GREBI ERa 36
Cad, Ncl Myc, OGG1, Apel 36,37
S100A8, PLCLI, LEPR, DRI, not identified 31
DEK

crystal structure shed light on how histone H3 is recognized. The
structural data revealed that histone H3 adopts three consecutive
y-turns, establishing a side chain spacing that places its N terminus
in an anionic pocket comprising Asn, Trp, and two Asp residues
(Figure 1). The structure also confirmed the positioning of the
lysine methyl groups in sufficient proximity to FAD for FAD-
mediated catalysis.

The crystal structures of LSD1 and detailed analysis of the
catalytic mechanism have led to a solid understanding of the cata-
lytic mechanism of demethylation of methylated lysine substrates
(Scheme 1).'%*~3! First, the methylated lysine substrate is con-
verted to an iminium cation, presumably through a two single-
electron oxidation of the amine by FAD. Next, the addition of a
water molecule to the iminium cation and subsequent deform-
ylation afford demethylated lysine. The FADH, generated in the
first step is oxidized by molecular oxygen to FAD, which is
utilized again for lysine demethylation. As would be expected
from the mechanism, demethylation by LSD1 is limited to mono-
or dimethylated lysine; LSD1 cannot demethylate trimethylated
lysine. This proposed catalytic mechanism for the demethylation
of methylated lysine substrates provides a basis for the design of
selective LSD1 inhibitors.

4. FLAVIN-DEPENDENT LYSINE DEMETHYLASE
INHIBITORS

As mentioned above, LSD1 is an amine oxidase that catalyzes
the demethylation of mono- or dimethylated histone lysine residues
and shows homology with monoamine oxidases (MAOs) A
and B (17.6% identity).”>** Therefore, MAO inhibitors might

Figure 1. X-ray crystal structure of LSD1 complexed with CoREST and
a histone H3 peptide (PDB code 2UXN). Amino acid residues of LSD1
and the histone H3 peptide are displayed as tube and ball-and-stick
models, respectively.

inhibit LSD1. Schule and co-workers tested whether pargyline
(1) (Figure 2), a well-known monoamine oxidase inhibitor,
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Figure 2. MAO inhibitors that inhibit LSD1.

inhibits LSD1 and found it blocks demethylation of H3K9 by
LSD1 and consequently blocks androgen receptor-dependent
transcription."> Other MAO inhibitors such as trans-2-phenylcy-
clopropylamine (PCPA, 2) and phenelzine (3) (Figure 2) have
been reported to inhibit LSD1, although their inhibitory activity
and selectivity for LSD1 are very low.>>>* ¢

Among MAO inhibitors, 2 is the best studied LSD1 inhibitor.
Schmidt and McCafferty demonstrated that 2 is a mechanism-based
irreversible inhibitor of LSD1, based on kinetics and MS analysis.”>
LSD1 inhibition by 2 occurs via formation of a covalent adduct with
the flavin ring following one-electron oxidation and cyclopropyl
ring-opening (Scheme 2). Three different types of 2—FAD adduct
have been suggested based on X-ray crystal structure analyses of
LSD1 complexed with 2. Yu and co-workers showed that the struc-
ture of 2—FAD complex in LSD1 is a five-membered ring adduct.®
On the other hand, Yokoyama and co-workers suggested that the
2—FAD complex is not completely composed of the five-mem-
bered ring adduct but partially contains an intermediate such as
N(5) adduct A% In addition, structural analyses of LSD1 com-
plexed with chiral PCPAs and its derivatives implied that (1R,25)-2
reacts with FAD in the active site to yield N(5) adduct A, whereas
(1S2R)-2 generates another N(S) adduct B.®

Although the LSDI-inhibitory activity of MAO inhibitors is
weak, high concentrations (>0.1 mM) of 2 induced an increase of
global H3K4 methylation and growth inhibition of neuroblasto-
ma cell and bladder cancer cells.*®**° Furthermore, ip injection
of 2 mg of 2 once daily for 21 days reduced neuroblastoma xeno-
graft growth in mouse models.*® As well as having anticancer
activity, 2 was found to have an antiviral effect. Kristie’s group
treated HSV- or VZV-infected cells with high concentrations
(>1 mM) of 2 and observed dose-dependent decreases in viral
immediate—early mRNA and proteins.** 2 also lowered the amount
of HSV by nearly 3 orders of magnitude compared with vehicle.

Derivatives of 2 have been reported to inhibit LSD1 more
potently and selectively than PCPA itself. Gooden et al. effi-
ciently synthesized several substituted PCPAs and examined
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their inhibitory activity toward LSD1, MAO A, and MAO B;
they found that compound 4 (Figure 3) is a more potent and
selective LSD1 inhibitor than 2.°° Ganesan’s group prepared
optically active PCPA analogues and identified (1R,2S)-4-bro-
mo-PCPA (5) (Figure 3) as an LSD1 inhibitor more potent than
2 in both LSD1 inhibition assays and human prostate LNCaP cell
growth inhibition assays.é1 NCL1 (6) and NCL2 (7) (Figure 3),
which are lysine—PCPA hybrid compounds designed based on
the crystal data, were discovered as the first cell-active LSD1-
selective inhibitors.** These small molecule PCPA—lysine ana-
logues showed LSD1 selectivity that was 400—11000 times
greater than that of 2. In human cancer cell lines, the compounds
inhibited cell growth at 6—67 uM, above which distinct H3K4
methylation was detected. In addition, it was recently reported
that (1S,2R)-NCL1 is approximately 4 times more potent than
(1R,28)-NCLI in enzyme assays.% Since the discovery of 6 and
7, several potent PCPA-based LSD1 inhibitors have been
identified. Compound 8 (Figure 3) showed selective inhibitory
activity for LSD1 and MAO A over LSD2 and MAO B.** In a
cellular model of acute promyelocytic leukemia, compound 8
caused cell growth inhibition and acted synergistically with
retinoic acid, an antileukemia drug. Structure-based drug design
led to the identification of S2101 (9) (Figure 3), which shows
potent LSD1 inhibition and selectivity for LSD1 over MAO A
and MAO B.* Compound 9 increased H3K4me2 levels in
HEK293T cells at a concentration as low as 1 #M. Recently,
N-alkylated PCPA analogues such as 10 and 11 (Figure 3) have
been reported.**”*° These compounds inhibited LSD1 with high
potency and selectivity over MAO A and MAO B, although full
details have not been disclosed.

Propargyl-Lys-4 H3-21 peptide (12) and hydrazine-Lys-4 H3-21
peptide (13) (Figure 4), which were designed based on the
structures of 1 and 3, respectively, have been reported to be
LSD1-selective inhibitors.***¢7%® The mechanism of LSD1
inhibition by peptide 12 involves conjugate addition of the flavin
NS to the 7y carbon of the electrophile following two-electron
oxidation to the iminium ion (Scheme 3). The propargyl lysine
peptide 12 is selective for LSD1 over MAO-B and can be used as
a biochemical tool for in vitro study of LSD1. Peptide 13 is an
LSD1 inhibitor 20-fold more potent than peptide 12. The
mechanism of LSD1 inhibition by peptide 13 has been suggested
to be as shown in Scheme 3. The LSD1 inhibition mechanism by
peptide 12 initially involves a two-electron oxidation to form the
corresponding diazene. After reoxidation of the FAD by molec-
ular oxygen, two-electron oxidation of the diazene yields the
diazonium species, an excellent leaving group. Attack from N(S)
of the reduced flavin leads to the peptide—FAD adduct with loss
of N,.

dx.doi.org/10.1021/jm201048w |J. Med. Chem. 2011, 54, 8236-8250



Journal of Medicinal Chemistry

PERSPECTIVE

Scheme 2

R
H3Cj©iN /NYO
HaC N‘%;(NH
FAD K o .
H,N A
Ph

HsC E N.__O H.C E H 0
3
H,;C N H,;C N
o) O)Io
Ph
)

-
H,N
APh

R
HSCKIN N \y//o
NH
HsC N
o}
HO Ph

Five-membered ring adduct

7

N(5) adduct A

\ Ry
H3C]©[N N__O
|
HaC NL(NH
ph°
%

o
N(5) adduct B

In addition to the mechanism-based LSD1 inhibitors mentioned
above, polyamine-based LSD1 inhibitors, which were inspired
by the homology between LSD1 and FAD-dependent polyamine
oxidases, have been reported.*>***” Huang et al. demonstrated
that (bis)biguanide analogues such as 14 (Figure S) inhibit LSD1
noncompetitively at <2.5 4M and inhibition of LSD1 by 14
increased H3K4me2, leading to re-expression of aberrantly
silenced genes important in the development of colon cancer,
including members of the secreted frizzle-related proteins
(SFRPs) and the GATA family of transcription factors.>> Woster
and co-workers reported that a series of isosteric ureas and thio-
ureas such as 15 (Figure S) also inhibit LSD1, induce increased
methylation at H3K4, and increase SFRP2 and GATA4 mRNA in
Calu-6 lung carcinoma cells. Further, thioureas including 15
showed Calu-6 cell growth inhibition with Gl of 9—40 uM.%
More importantly, Huang et al. showed that co-treatment with
oligoamine LSD1 inhibitor 16 (Figure 5) and a DNA methyl-
transferase inhibitor results in significant inhibition of the growth
of established tumors in a human colon cancer tumor model
in vivo.*

5. BIOLOGY AND PHARMACOLOGY OF JUMONJI
C-CONTAINING LYSINE DEMETHYLASES

JMJD histone demethylases remove the methyl groups from
methylated histone lysines throusgh Fe(1I)/a-ketoglutarate-de-
pendent enzymatic oxidation.'"* To date, a number of JMJD
histone demethylases have been identified, and they display
substrate specificity (Table 2). While demethylation by LSD1
is limited to mono- or dimethylated lysine, JMJDs can demethy-
late trimethylated lysine, as shown in Table 2. The histone lysine
demethylation by JMJDs modulates the expression of a number
of genes. For example, Klose et al. demonstrated that KDM3A
(also known as JHDM3A and JMJD2A) demethylates H3K9me3
and H3K36me3 and decreases the expression of the achaete —scute

complex homologue 2 gene.86 On the other hand, Yamane et al.
reported that KDM3A (also known as JHDM2A and JMJD1A)
specifically demethylates H3K9mel/me2 and facilitates transcrip-
tional activation of androgen receptor target genes.”*

As shown in Table 2, it has been reported that JMJD lysine
demethylases are associated with several disease states, including
cancer. For example, Kauffman et al. revealed that KDM4A, a
member of the JMJD lysine demethylase family, is involved in
bladder cancer initiation and progression.”” In addition, over-
expression of KDM4C, another member of the JMJD lysine
demethylase family, increases the expression of Mdm2 oncogene
in a manner dependent on KDM4C’s demethylase activity, lead-
ing to a decrease of pS3 tumor suppressor gene product in the
cells.”* Furthermore, the outcome of RNAi-mediated knock-
down of KDM4C suggested that this enzyme is associated with
cell growth of esophageal squamous cancer,®” prostate cancer,”®
breast cancer,”” and primary mediastinal B cell lymphoma and
Hodgkin lymphoma.”® Therefore, selective inhibitors of JMJD
lysine demethylases are potential tools for studying the functions
of these enzymes and also are candidate therapeutic agents that
would be expected to have few side effects.

6. STRUCTURAL STUDIES AND CATALYTIC MECHA-
NISM OF JUMONJI C-CONTAINING LYSINE
DEMETHYLASES

Some of the JMJD lysine demethylases, including KDM4A,
KDM?7A, and KDM7B, are structurally well characterized.!3%132~13¢
The crystal structures make it clear that a-ketoglutarate coordi-
nates the Fe(II) ion in the active site through its a-carbonyl and
carboxylate groups and also forms a hydrogen bond with the
other carboxylate group and Tyr or Lys (Figure 6). The struc-
tures provided a rationale for the substrate specificity. The X-ray
crystal structures of a series of complexes between KDM4A and
methylated K9-containing H3 peptides show that the peptide
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chain lies across a shallow groove, placing the methylated K9 in a
relatively large cavity with the methylamino group sufficiently

close to the Fe(II) for hydroxylation."** The crystal structures
also suggested that the methylamino group of the peptide is
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recognized by oxygen-rich amino acid residues such as Gly, Tyr,
Glu, and Ser via CH:* +-O hydrogen bonds between the CH
group of the methylamino moiety and the oxygen of the amino
acid residues. Lys and Arg, adjacent to the Zn-coordinating
residues His and Cys, respectively, are also involved in substrate
binding, indicating a role for the Zn-binding site in peptide
recognition. In addition, Cheng and co-workers showed that
H3K9me2 and H3K27me2 recognition by the Jumonji domain
of KDM7B and KDMT7A, respectively, requires binding between
H3K4me3 and the plant homeodomain of the enzymes.'*®

The catalytic mechanism of histone lysine demethylation by
JMJDs has been studied extensively and is well understood””"
(Scheme 3). First, single electron transfer from Fe(II) complexed
with a-ketoglutarate to molecular oxygen generates Fe(III) and
superoxide. Next, the superoxide serves as a nucleophile that
attacks the C2 position of a-ketoglutarate, causing decarboxylation

8241

not require the lone pair on the nitrogen of the substrate. There-
fore, JMJD lysine demethylases can demethylate mono- and
dimethylated lysine, as well as trimethylated lysine.

7. JUMONJI C-CONTAINING LYSINE DEMETHYLASE
INHIBITORS

On the basis of the three-dimensional structure and the cata-
lytic mechanism of JMJD histone lysine demethylases mentioned
above, a number of JMJD inhibitors have been identified.

As shown in Scheme 3, JMJD lysine demethylases produce not
only demethylated lysine but also succinate. Smith et al. showed
that high concentrations (>10 mM) of succinate 17 (Figure 7)
inhibit JMJD demethylases in a yeast model of paraganglioma.'*’
It is likely that succinate 17 inhibits the enzymes through product
inhibition by shifting the equilibrium in the reaction, enzyme-
a-ketoglutarate + methylated lysine <> enzyme-succinate +
demethylated lysine, toward the reactants.

Recently, it has been reported that the Ni(I) ion causes
inhibition of KDM3A by reglacing Fe(Il) in the active site of the
enzyme (ICso = 25 uM)."*® In human epithelial BEAS-2B cells,
Ni(II) exposure increased the level of H3K9me?2 at the promoter
of Spy2, a KDM3A-targeted gene, by inhibiting KDM3A.

Analogues of a-ketoglutarate have been reported to inhibit
JMJD proteins. These analogues are thought to be competitive
inhibitors with respect to a-ketoglutarate. The oncometabolite

dx.doi.org/10.1021/jm201048w |J. Med. Chem. 2011, 54, 8236-8250



dx.doi.org/10.1021/jm201048w |J. Med. Chem. 2011, 54, 8236-8250

8242

T€T ‘0T paytodar jou uoneEAIE T/TRWENEH 0899LTDDOIN T900VVDI ‘ATNAH[ ‘SOYD  TIHd
euroupIed refnpoojedsy pue ‘Teoues Suny ‘ewroumnres omsed
61 ‘8T1 “eW0)sL[qOINAU ‘BWOUDIE) [[30 [eual ‘ewroydwiA] ur passardxararo uorjeAn)de CIWRCH TZSON DOIAQN  £Seuln
171 ‘971 moId [[25 190ued sadUBYUD {1eoued Juny [[9d-[[Euus-uoU Ul passaIdxaIoa0 uorssoxdax €/T QW9ENEH ‘€/T/T AW EH AldviN 990N
STI [IMOIS [[29 I19DUED SIIUBYUD 120UED UT PIssaIdxaIan0 uoneanoe TPWOSEH sanl sw@I
uorssaxdax PO EH
YCI—811 UOLEPILIDI [EUSW PIUI-X UL pajejnut uoneAnde  [IWOTNPH ‘TIWLTIEH T/ T dW6NEH TITIVVDI ‘8dHd ‘ATNAH[ 9L
8IT ‘LIT paytodar jou UOnRAIIE TWLDIEH “TPWEIEH SILIVVDI ‘ATNAH[ VLN
ewoydwA| s uny8po ur passardxaraso ‘rossaxddns
OTT—+IT ‘TTT ‘OTT Towm) € se s)oe ‘sapeoses Jurpeuds Lrojeurwrefyur ur paAjoAur uoneanoe €/T W DIEH cainl gomat
€IT—0T1T 190Ued Ul pajejntu uoneAnde €/TIWLDICH XIN VONAI
601 peyodar jou uorssardar €/T 3WIEH XOWS ‘araravl aswa
PUIOUDIE) [BUSI UI pajenur Guatrdo[oAsp dHLIPUSP PUE [BAIAINS
80T—90T [BUOINAU UI PIA[OAUT ‘UOTEPIEJDT [EJUSW PINUI[-X Ul pajejnur uorssaxdax €/T Y YOS D1aryvl DS
Imo1d [[25 120UEd Ul PIA[OAUT
SOT—T10T {1ooued a3e3soxd pue ‘s1ysa) searq ur passardxarano uorssaxdax €/T AU EH I-01d ‘ararav( gSINa
I9DUED UT 33e)s Juerajo}-3nip
UT PAAJOAUT {S[[30 JURUSI[EW JO 95UISIUAS sjuaaald pue
00T—96 100ued d1nsed ur passardxaIano ‘eruayna[ profAw 3jnde sadnpur uorssaxdax €/T updEH 7dd ‘viargvl VSN
uorssoxdax €/7 QW9 EH
umowun €/T/1 2WeEH
S8 48 paodoar jou umowun €/T AWoDH TH 08L0VVDI ‘Acalnl arWa
suadoouo gwpx Jo uorssardxe saseandur fewoydwd] uniSpoyy pue ‘ewoydwA] oo g
[eunserpawr rewnd Geoued jsearq ‘ewounies projeurodres Suny uorssardarx €/T QW9 ¢H
snejselow ‘ewoyseqofnpawr dpsefdowsap ‘ewounIed [[25 uoneanoe €/7 QWEEH
$6—76 ‘06 ‘S8—1T8 ‘S¢ snowenbs [eaSeydoss ‘rooues ayeysoxd ur payrdure /passardxarano umowyun COwYDIY TH 1DSVD DeINaH( Dzainl DY@
uorssaxdax €/7 AW9OEH
IM013 [[90 TaoUED JSEAIq SIIUBYUD ‘BUIOISL[O[[PaUr UOTJEAT)OR €/7 dWENEH
16—68 ‘S8—7T8 snsejdowsap pue 1eoued jsealq ‘roued ayeysoxd ur passardxarano umowun COwWOY TH gewaH( ‘gazanl gFrnat
AydonadAy s1pres sajoword ‘uoneorydar uorssardax €/T AW9EEH
snuasadiay pajenosse-ewodes s sodey] sayenSar ‘uorssaxSord pue uoneanoe €/7 QWENEH
w 88—78 ‘6S UONRNIUT JODUED IOPPE[q U PIAJOAUT 1a0ued djeysord ur passardxaraso umowyun WYY TH veWwad( ‘veainl vyt
m 18 ‘08 1e0ued ormsed adAy-asngrp ur passardxa uoneAnoR T/T WENEH 8dNIL ‘OTAAH[ OTAlNf DEWa
g 6L €T qmoi3 22 [-Z LA sessexddns uoneAnOE T/T PWENEH VONDS ‘goinaH( ‘aralinf gaewa
(W) IMo13 [[95 T0wmy
m 8L—L SOOUBYUD L0UE)sISAIT £159q0 pue uotssaxdxs auad oroqelsw sajenSax uoneanoe /1 dWEEH VOS.I Vel ‘VIainl Vet
H.m T/T 2Wwoey
[T} €L—0L BIWSYNI] PIO[PAT 3)NIE JO DUBUI)UEW PUE UOTENIUT 10§ parmbar uorssaxdax CH'COWHCH oTIX9d ‘ATINaH[ FON@I
...Mm 0L peyodar jou uorssaxdox T/T W9 EH TIIX9d ‘VINAH[ VIN@I
q|na spo1 SISLISIP 03 YuI| uondiosueny ajensqns SUIEU JAIEUID)[E sureu
W Arure asedygawra(q autsAT A T d1qeL
=




Journal of Medicinal Chemistry

PERSPECTIVE

Figure 6. X-ray crystal structure of JMJD2A complexed with N-oxalyl-
glycine (NOG), the amide analogue of a-ketoglutarate, and an H3K9me3
peptide (PDB code 20Q6). Amino acid residues of JMJD2A are displayed
as tube models, and the histone H3 peptide and NOG are displayed as
ball-and-stick models. Fe(II) is replaced by Ni(II).
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Figure 7. Structures of succinate 17, a-hydroxyglutarate 18, NOG 19,
and NOG’s derivatives 20 and 21.

a-hydroxyglutarate 18 (Figure 7), a reduced analogue of
o-ketoglutarate, inhibited KDM2A, KDM4A, and KDM4C with
ICs ranging from 24 to 106 uM.'¥ N-Oxalylglycine (NOG, 19)
(Figure 7), an amide analogue of a-ketoglutarate, has been
reported to inhibit JMJD proteins in vitro.”> Although NOG
(19) itself does not display activity in cells because of its poor
membrane permeability, owing to its high polarity, 2.5 mM
dimethyloxalylglycine (DMOG), the dimethyl ester prodrug of
NOG, enhanced the methylation levels of H3K9 and H3K36,
indicating that 19 generated intracellularly from DMOG inside
the cells represses the demethylation activity of JMJDs."** The
X-ray crystal structure of KDM4A complexed with 19 was
reported."* It showed that the oxalyl group of 19 coordinates
in a bidentate manner to Fe(II), and the other carboxyl group
forms a hydrogen bond with Tyr132 in the active center of
KDM4A. On the basis of the crystal structure, 19 derivatives such
as 20 and 21 (Figure 7) have been designed in attempts to find
JMJD lysine demethylase inhibitors more potent than 19."#°~ 1%
In particular, although a-hydroxyglutarate 18 and 19 inhibit other
Fe(II)/a-ketoglutarate-dependent oxygenases, such as prolyl hy-
droxylase domain-containing proteins (PHDs) and factor-inhibit-
ing hypoxia-inducible factor (FIH), N-oxalyl-p-tyrosine derivative
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Figure 8. Pyridine-based JMJD histone demethylase inhibitors.

21 showed selective inhibition of KDM4 over PHD2, another
Fe(II)/a-ketoglutarate-dependent enzyme that hydroxylates hy-
poxia-inducible factor.'*' The crystal structure of the KDM4A
complex with an analogue of compound 21 showed that the
tyrosinyl side chain of the inhibitor interacts with hydrophobic
amino acid residues (Ile71, Tyr132, Tyrl77, Phel8S, and the
alkyl chain of Lys241) which form a subpocket at the KDM4A
active site."*!

2,4-Pyridinedicarboxylic acid (PCA, 22) (Figure 8), which
inhibits other Fe(II)/a-ketoglutarate-dependent oxygenases,
was also reported to be a potent inhibitor of KDM4A and
KDM4E (ICsy = 0.7—4.7 uM)."* The X-ray crystal structure
of 22 bound to KDM4A revealed that 22 inhibits KDM4 in a
binding mode similar to that of 19. It binds to Ni(II) [which
replaces Fe(II)] in a bidentate manner through its nitrogen atom
and 2-carboxylate oxygen. The 4-carboxylate oxygen of 22 forms
hydrogen bonds with NH of Lys241 and OH of Tyr177. The
pyridine ring of 22 forms hydrophobic interactions with Tyr177,
Phel8S, and Trp208. The structural analysis suggested that a
substituent at the C-3 position of 22 can interact with amino acid
residues of KDM4A, such as Tyr177, while the active site cavity
of PHD?2 is not capacious enough to accommodate C-3-sub-
stituted PCA. Schofield and co-workers identified C-3-substi-
tuted PCAs such as 23 (Figure 8) by means of structure-based
drug design.'*’ Compound 23 was an inhibitor with selectivity
for KDM4E over PHD2 (KDMA4E ICq, = 2.5 uM; PHD2 ICy, >
400 M), demonstrating that structure-based drug design can
lead to the identification of inhibitors with selectivity for JMJD
over other Fe(II)/a-ketoglutarate-dependent oxygenases.

The PCA-related compound SID 85736331 (24) (Figure 8)
was discovered as a KDM4 inhibitor (KDM4A ICs, = 1.7 uM;
KDMA4E ICs, = 2.4 M) by means of high-throughput screening
of about 236000 compounds.'** The structure of KDM4A
complexed with compound 24 revealed that 24 is positioned in
a similar location to 19 and 22; it coordinates with Ni(II) in the
active site in a bidentate fashion via its quinoline nitrogen and
8-hydroxyl group. The C-5-carboxylate group of compound 24 is
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Figure 9. Hydroxamate-based JMJD histone demethylase inhibitors.
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Figure 10. Structures of disulfiram analogue 28, vorinostat 29, and epigallocatechin gallate 30.

positioned to interact with Lys206 and Tyr132. Compound 24
also showed dose-dependent KDM4A-inhibitory activity in cells
at concentrations ranging from 100 to 300 #M and restored the
trimethylation pattern at the H3K9 locus in cells overexpressing
KDM4A demethylase. Its activity was 40-fold stronger than that
of DMOG.

Pyridine compounds of another type, such as bipyridine 25
(Figure 8), have recently been reported as KDM4 inhibitors.'**
Compound 25 inhibited KDM4E with an ICs, of 0.18 M. The
crystal structure of the KDM4A complex with 25 revealed that
compound 2§ binds to the active site metal by bidentate chela-
tion through its two pyridine nitrogens. The carboxylate of 25 is
positioned to interact with Lys206 and Tyr132 in a manner anal-
ogous to 19, 22, and 24. The amide nitrogen of 25 is positioned
to form two hydrogen bonds with the phenolic oxygen atom of
Tyr177 and the backbone carbonyl oxygen atom of Glul69 via
water molecules. Electrostatic interaction of the cationic amino
group of 25 with Asp135 was also observed.

NCDM-32 (26) (Figure 9) was designed based on the crystal
structure of KDM4A and a homology model of KDM4C
complexed with 19 and a histone trimethylated lysine peptide."**
Compound 26 inhibited KDM4A and KDM4C with ICs, of 3.0
and 1.0 uM, respectively, showing 500-fold greater KDM4C-
inhibitory activity and more than 9100-fold greater KDM4C/
PHD selectivity compared with the lead compound 19. Further-
more, the ester prodrug of 26 showed synergistic growth inhibi-
tion of cancer cells in combination with 7, an inhibitor of LSD1.
Wang and co-workers have recently reported a novel JMJD-
selective inhibitor 27 (Figure 9) which was also identified by

means of structure-based drug design.'*’ In enzyme assays, com-
pound 27 inhibited the subfamily of trimethyllysine demethy-
lases, such as KDM4A and KDM4C, preferentially over other
Fe(II)/a-ketoglutarate-dependent oxygenases such as PHD1 and
PHD2. More importantly, methylstat, the methyl ester prodrug
of 27, selectively inhibited JMJD demethylases in cells and
showed growth inhibition of esophageal carcinoma KYSE150
cells, in which KDM4C is highly expressed. The cancer cell
growth-inhibitory activity of the prodrug of 26 and methylstat
suggested that JMJD demethylase inhibitors have clinical poten-
tial for anticancer chemotherapy.

Schofield and co-workers demonstrated that disulfiram anal-
ogues such as compound 28 (Figure 10) inhibit JMJD2A by
removing Zn ion from the Zn-binding site of JMJD2A."*® Their
work suggested that Zn removal has potential for achieving selec-
tive inhibition of the JMJD2 demethylases over those family
members that do not have a Zn-binding site.

Hydroxamic acids such as vorinostat 29 (Figure 9) and catechols
such as epigallocatechin gallate 30 (Figure 10) have been reported
to inhibit JMJD2 demethylases, although they also inhibit other
enzymes, including HDACs and DNA methyltransferases.'*>'*'%°

8. CONCLUSION

Since the discovery of LSD1 in 2004, a number of lysine
demethylases have been identified. There is now strong evidence
that at least some of the lysine demethylases, including LSD1 and
KDM4C, are associated with disease states including cancer,
herpes simplex, and metabolic diseases. Thus, lysine demethylases
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have emerged as attractive targets in drug development. Efforts
by many groups to find lysine demethylase inhibitors have led to
the identification of several classes of inhibitors, as described
here. However, the activities (ICso or K; of most reported lysine
demethylase inhibitors hover at a level of micromolar. It is hoped
that more potent and selective lysine demethylase inhibitors will
be identified by structure based drug design as is the case with
other protein ligands. To date, the X-ray crystal structures of
LSD1, KDM4A, KDM4C, KDM7A, and KDM7B have been
published. These crystal structures should pave the way for the
design of more potent, isozyme-selective inhibitors, which
should be useful not only as tools for detailed elucidation of
the biological functions of the isozymes but also in the develop-
ment of therapeutic agents with few side effects.
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loxalylglycine; PHD, prolyl hydroxylase domain-containing pro-
tein; FIH, factor-inhibiting hypoxia-inducible factor; PCA, 2,4-
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